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Abstract. This paper presents an efficient group-theoretic approach for computing the statistics
of non-reversal random walks (NRRW) on lattices. These framed walks evolve on proper crystal-
lographic space groups. In a previous paper we introduced a convolution method for computing
the statistics of NRRWs in which the convolution product is defined relative to the space-group
operation. Here we use the corresponding concept of the fast Fourier transform for functions on
crystallographic space groups together with a non-Abelian version of the convolution theorem. We
develop the theory behind this technique and present numerical results for two-dimensional and
three-dimensional lattices (square, cubic and diamond). In order to verify our results, the statistics
of the end-to-end distance and the probability of ring closure are calculated and compared with
results obtained in the literature for the random walks for which closed-form expressions exist.
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1. Introduction

The topic of random walks on lattices and on finite groups has been of interest to
mathematicians for at least half a century [15, 24, 36], and remains of interest in recent
times [9, 10]. Often the main mathematical goals in studying random walks center around
limiting behaviors of ensembles of walks as their length becomes large [28, 41, 43]. Similar
topics have been studied intensely in the context of random walks on Lie groups, and asso-
ciated convolutions (see e.g., [6, 16, 19]). Statements about the behaviors of random walks
on broad classes of groups are often sought. However, our goal is somewhat different. In
this paper, we develop a computational methodology to compute exact probability distri-
butions of random walks of finite (but possibly large) length on particular finite groups.
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From these distributions we can extract any statistical quantity of interest. In spirit, our
motivation is similar to that behind the development of group FFT’s Diaconis and Rock-
more [8], though the groups of interest in our study have noncommutative subgroups that
remain small as the group grows, and so the usual Abelian FFT can be used. In particu-
lar, our emphasis is on random walks on proper crystallographic space groups, which are
discrete subgroups of the groups of rigid-body motions. This particular family of groups
is important because they provide a natural setting to study non-reversal random walks
in lattices in Euclidean space. Such walks serve as an intermediate between those that
are purely random and those that are completely self-avoiding (such as those studied in
[25, 30]). Walks on lattices have been studied extensively for a variety of reasons [42].

1.1. Literature review

Many scientific fields use random and self-avoiding walks on lattices. Polymer theory
is an important example of this. The statistical behavior of long polymer chains on lattices
is often studied using the Monte Carlo sampling method introduced in [34]. This method
has been used extensively in the literature [39]. The existence of polymer science traces
back to the 1930s [27]. Through the decades of the 1950s and 60s many more new models
were introduced, as reviewed in Flory’s book [13]. Studying the statistics of polymers is
a matter of interest [1, 18] because of the knowledge about mechanical properties that
results [26]. Some examples of these properties include the elasticity of rubbery materials
[26] and the toughness and ductility of semi crystalline polymers. Another very important
quantity is the entropy of the polymer solution. All of these properties depend on the
statistics that we study [13, 26], which in turn are due to their molecular structure. Hence
it is very important to study the structure and statistics of ensembles of long polymer
molecules.

A polymer configuration can be represented as a lattice random walk if we consider the
lattice bead the central carbon atom of the monomer and the lattice edge the covalent bond
between the monomers. Let ri denote the position of the ith bead, and let i = 0, · · · , n
enumerate the n + 1 lattice beads. Then the bond vector, bi = ri − ri−1, connects two
sequential lattice beads. Summing the n edge vectors of n+ 1 identical monomers in the
chain, we find the end-to-end distance vector r [26]:

r =
n∑

i=1

ri − ri−1. (1)

The corresponding end-to-end distance is r = ∥r∥ where ∥r∥ =
√
r · r. As a matter of

notation, double vertical lines denote the two-norm of a vector, whereas single vertical
lines denote the number of elements in a set, e.g., |{a, b, c}| = 3. Both notations are used
in this paper and should not be confused.

Other important physical quantities are related to the distribution of values of r,
denoted as p(r). A plethora of simulation methods, for instance those in [31], have been
developed in order to obtain information about how p(r) evolves for polymer chains. Our
study focuses on the random walk (RW) on lattices under the simple constraint that step
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i + 1 cannot return to the location of the walk at step i. This is called a “non-reversal
random walk” (NRRW). It is convenient to think of NRRWs as framed walks. That is, a
reference frame is attached to each step in the walk, with the local x-axis pointing along
the new direction of motion, which in the case of a polymer is the bond vector.

1.2. Limitations of brute-force enumeration

Let gn denote the reference frame attached to the nth bead in a polymer model. This
frame consists of a rotation-translation pair, gn = (Rn, tn), where Rn is a rotation matrix
that is an element of a proper crystallographic point group and tn is a translation vector
within the corresponding crystallographic lattice. In the brute-force case if one wants
to move (without backtracking) from the reference frame attached to the end step of an
n-segment walk which is described by gn to the reference frame of an (n + 1)-segment
random walk, then one could proceed as follows. First find all the possible poses (posi-
tions and orientations) that the 1-segment random walk on the lattice can reach using
allowable moves. The number of these moves is 3 for the square lattice, 3 for the diamond
lattice and 5 for the cubic lattice. If we want to find all the walks of n segments, the
computational complexities of doing this brute-force enumeration are 3n, 3n, and 5n re-
spectively. However, if one does not seek to record all possible conformations, but rather is
only interested in the distribution of positions and orientations of the distal end relative to
the proximal end, then given the distribution fn(g) and the corresponding distribution of
1-step walks that do not backtrack, f1(g), the distribution for all conformations of length
n+ 1 is obtained by the convolution [40]

fn+1(g) = (fn ∗ f1)(g) =
∑
h∈G

fn(h)f1(h
−1 ◦ g). (2)

Here the sum is taken over the proper crystallographic motion group, G, that describes
the particular lattice walk. But since in practice the support of f1(g) is very small, the
sum does not need to be taken over this whole group, but only over the support of f1
for each value of g in the support of fn+1.

† Referring to [40] for more details, (2) can be
written more explicitly as

fn+1(t, R) = (fn ∗ f1)(t, R) =
∑
A∈P

∑
a∈L

fn(a, A)f1(A
T (t− a), ATR). (3)

where P is the proper crystallographic point group (described as a set of rotation matrices)
and L is the lattice translation group (described as a set of vectors), combinations of which
comprise all of the possible motions inG. Iterating these convolutions by using the result of
each as the input for the next and letting n → n+1 generates the sequence of distributions
{fn(g)|n = 1, 2, 3, ...} in polynomial complexity rather than the exponential complexity of
brute-force enumeration. However, for very long chains, it is possible to do even better
by employing the noncommutative Fourier techniques described in the remainder of the
paper.

†Recall that the support of a function is the part of its domain corresponding to nonzero values of the
function.
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2. Fourier transform based on reducible representations of space groups

The main reason for using the group Fourier transform in this work is that the convolu-
tion theorem allows for the efficient computation of (2) (or equivalently, (3)). This provides
an alternative technique for computing convolutions, and analyzing the limiting behavior
of long walks by raising Fourier matrices to high powers rather than iterating convolution
many times using (3) directly. For the theoretical foundations behind Fourier analysis on
proper crystallographic space groups, see works such as [2, 3, 4, 5, 11, 17, 20, 22, 29, 37, 38].

Since the walks of interest will always be finite, we can define a maximal length of
interest, N , and then rather than doing calculations with the full lattice L, we can do
calculations with the quotient lattice L/NL. The group that acts on this lattice will be
referred to here as the lattice motion group. This is the quotient group G/NL. Function-
ally, the only difference between G and G/NL is that the latter is finite and translations
larger than N steps in any spatial direction “wrap around,” whereas G is infinite because
translations continue on to infinity in all spatial directions. As long as the length of a
walk satisfies n < N/2, then there is no difference in computing the distribution fn(g)
with g ∈ G or g ∈ G/NL since there is no wrap-around effect. Here we will focus on the
details of the Fourier transform for lattice motion groups and its application to polymer
theory. Due to the simplicity of the form of reducible representations of these groups, we
use them instead of irreducible representations. Although the classical theory is built on ir-
reducible representations, we show in the following sections that reducible representations
can be used.

2.1. Basics of the representation theory of finite groups

A unitary representation of a finite group, such as G/NL, is a mapping that takes
elements of the group, g, and returns unitary matrices, Π(g, k), with the properties

Π(g1 ◦ g2, k) = Π(g1, k)Π(g2, k) and Π(e, k) = I (4)

where e is the identity element of the group, k is an element of the dual space of the
group, and I is the identity matrix with the same dimension as Π(g, k). Sometimes it will
be convenient to write Πk(g) for Π(g, k) and sometimes we will leave off the argument and
write Πk. The first equality in (4) is analogous to eik(θ1+θ2) = eikθ1eikθ2 which, together
with unitarity and completeness, forms the foundations of all of the useful properties in
Fourier analysis.

The matrix-valued functions Πk(g) in (4) are called unitary representations. Usually
Fourier analysis on groups is defined based on irreducible unitary representations. These
are matrices with the smallest possible dimensions. However, we use reducible represen-
tations that are easy to define. The dimension of these representations will be |P| × |P|.
Since |P| will not typically be a huge number (e.g., 4 for the square lattice, 12 for the
diamond lattice, 24 for the cubic lattice), it is hardly worth the added effort to reduce
them. However, since the classical theory only addresses irreducible representations, we
need to verify that our Fourier transform for G/NL (which is defined in the following
section) is in fact invertible.
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Let {Rj} for j = 1, ..., |P| denote the set of all rotations in the point group P. Reducible
representations of G/NL are matrices with entries of the form [7]

Πm,n(g,k) = ei(Rmk)·(a)δ(RT
nA

TRm). (5)

The δ function implies that RT
nA

TRm = IP (the identity matrix with the same dimensions
as rotations in the proper point group P), forcing the equality A = RmRT

n .
Let g1 = (A1, a1) and g2 = (A2, a2). The reducible representation defined in (5)

evaluated at g1 ◦ g2 is given by:

Πm,n(g1 ◦ g2,k) = ei(Rmk)·(A1a2+a1)δ(RT
nA

T
2 A

T
1 Rm). (6)

Then let A = Π(g1,k), B = Π(g2,k), and C = Π(g1,k)Π(g2,k). The entries of matrix C
can be written as

Cm,n =
∑
j

Am,jBj,n =
∑
j

ei(Rmk)·(a1)δ(RT
j A

T
1 Rm)ei(Rjk)·(a2)δ(RT

nA
T
2 Rj). (7)

Given the fact that Rj = AT
1 Rm, (7) can be rewritten as:

Cm,n = ei(Rmk)·(a1)ei(A
T
1 Rmk)·(a2)δ(RT

nA
T
2 A

T
1 Rm), (8)

or equivalently
Cm,n = ei(Rmk)·(A1a2+a1)δ(RT

nA
T
2 A

T
1 Rm), (9)

which indeed equals to the elements of (6).

2.2. Analysis: Fourier transform

The matrix elements of the Fourier transform of a function on a lattice motion group
can be defined as:

f̂(k)m,n =
∑

g∈G/NL

f(g)Π(g−1,k) =
∑
A∈P

∑
a∈L/NL

f(a, A)ei(Rmk)·(−AT a)δ(RT
nARm). (10)

Using the properties of the delta function, (10) can be rewritten as

f̂(k)m,n =
∑

a∈L/NL

f(a, RnR
T
m)e−i(kTRT

mRmRT
na) (11)

where k is drawn from the reciprocal lattice (see the appendix). By setting u = RT
na, (11)

becomes
f̂(k)m,n =

∑
u∈L/NL

f(Rnu, RnR
T
m)e−i(k·u). (12)

Equation (12) can be identified as a d-dimensional space DFT-transform, where d is the
dimension of the lattice. That is, |L/NL| = Nd. The sum over L/NL is a nested sum of d
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one-dimensional sums from j = 0 to N−1. The matrix f̂(k) is a |P|×|P| matrix where |P|
is the number of rotations in the proper point group P. We can reduce the computational
cost by using the classical fast Fourier transform (FFT) to compute (12). The FFT is
standard in many numerical/computational software packages.

In (12), the sum
∑

u∈L/NL f(Rnu, RnR
T
m)e−i(k·u) is calculated over u. The FFT is

calculated with respect to u and the non-zero terms of the summation occur on the support
of f(Rnu, RnR

T
m). Since the term Rnu is actually the a term, we have a function of a

calculated over the u, where u = RT
na. If we use the f(a, A) as an input argument in the

FFT function in standard packages, then since f is a function of a and the FFT should
be computed over u, the FFT must be called as FFTD(f(RT

na, RnR
T
m)), where the term

FFTD is the pseudocode of the d-dimensional direct FFT function. Our goal is to use
this Fourier transform to compute convolutions and to reconstruct f(a, A) from (12).

2.3. Convolutions using the Fourier transform

Our whole reason for wanting to compute Fourier transforms on space groups is that
the property (4) immediately implies that

f̂1 ∗ f2(k) = f̂2(k)f̂1(k). (13)

This can be proven abstractly without going into the detailed structure of the represen-
tations in (5), as long as (4) holds. We know (4) to be true from the analysis provided in
the equations (7)-(9).

By definition we have

̂(f1 ∗ f2)(Πk) =
∑
g∈G′

(∑
h∈G′

f1(h)f2(h
−1 ◦ g)

)
Πk(g

−1)

where G′ = G/NL. By setting p = h−1◦g and substituting g = h◦p, we have the following
expression ∑

p∈G′

∑
h∈G′

f1(h)f2(p)Πk(p
−1 ◦ h−1).

By taking into account the homomorphism property of Πk and the commutativity of
scalar-matrix multiplication and summation, this can be split into∑

p∈G′

f2(p)Πk(p
−1)

(∑
h∈G′

f1(h)Πk(h
−1)

)
= f̂2(Πk)f̂1(Πk).

This works regardless of whether or not the representations are irreducible.
Of course, such a convolution theorem has value only when we can recover a function

from its Fourier transform. This is verified in the following subsection.
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2.4. Synthesis: Inverse Fourier transform

The function f(a, A) can be recovered from the set of Fourier transform matrices
{f̂(k)} by the following formula:

f(a, A) =
1

|P|

|P|−1∑
m,n=0

1

Nd

∑
k

f̂(k)m,ne
ik·RT

naδ(RT
nARm). (14)

It may not be obvious a priori that a function f(a, A) on a lattice motion group can be
recovered from the Fourier transform in (10), since the representations are reducible. We
can prove that (14) does recover f(a, A) by first writing:

g(a, A) =
1

|P|

|P|−1∑
m,n=0

1

Nd

∑
k

∑
u∈L/NL

f(Rnu, RnR
T
m)e−i(k·u)eik·R

T
naδ(RT

nARm). (15)

We will see if g(a, A) = f(a, A). By setting ν = Rnu ⇒ u = RT
nν, (15) becomes

g(a, A) =
1

|P|

|P|−1∑
m,n=0

1

Nd

∑
k

∑
ν∈L/NL

f(ν,RnR
T
m)e−iRnk·(ν−a)δ(RT

nARm). (16)

By setting k
′
= Rnk, this becomes

g(a, A) =
1

|P|

|P|−1∑
m,n=0

1

Nd

∑
k′

∑
ν∈L/NL

f(ν,RnR
T
m)e−ik

′ ·(ν−a)δ(RT
nARm), (17)

which obviously takes the form

g(a, A) =
1

|P|

|P|−1∑
m,n=0

f(a, RnR
T
m)δ(RT

nARm) = f(a, A). (18)

It is convenient to calculate the inverse Fourier transform for a lattice motion group
using the classical Abelian inverse FFT transform in d-dimensional lattices for the trans-
lational part, and computing the rotational part by brute-force. That is, since (14) can
be rewritten as

f(a, A) =
1

|P|

|P|−1∑
m,n=0

1

Nd

∑
k

f̂(k)m,ne
iRnk·aδ(RT

nARm) (19)

and since we can set k1 = Rnk ⇒ k = RT
nk1, (19) becomes

f(a, A) =
1

|P|

|P|−1∑
m,n=0

1

Nd

∑
k1

f̂(Rnk1)m,ne
ik1·aδ(RT

nARm). (20)
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The term 1
Nd

∑
k1

f̂(Rnk1)m,ne
ik1·a can be easily calculated by using software packages

containing the inverse Fourier transform. Again we note, as in the case of the Fourier
transform, that since the sum is over k1, and f̂ is a function of k, the pseudocode would be
of the form IFFTD(f̂(Rnk))m,n. Since we have the term δ(RT

nARm) ⇒ Rm = ATRn, we

can simply calculate f(a, A) using 1
|P|
∑

n IFFTD(f̂(Rnk)index(AT ,Rn),n), where “index”
calls the group table for the proper point group of rotational symmetries of the lattice, P.

2.5. Computational cost

The new feature of the methods presented in this paper and that of [40] is that the
methods can efficiently generate exact statistics (to within machine precision) correspond-
ing to all of the exponential number of conformations. This becomes more and more
convenient when the number of segments increases. While previous methods relied on
sampling, the new method presented here finds statistics for all the possible conforma-
tions in a very short time. A natural question to ask is if, and how much, the Fourier
transform speeds up the computation of convolutions on proper space groups. The Fourier
transform based on irreducible unitary representations will naturally be the fastest, but it
also requires the most pre-processing in terms of determining all of the IURs.

Consider the case of a homogeneous polymer in which the single-step distribution
function describing allowable conformational motions going from residue i to i+1 is f1(g).
The end-to-end distribution in positions and orientations for a polymer of length L residues
will then be the n-fold convolution fL(g) = (f1 ∗ f1 ∗ · · · ∗ f1)(g). This chain will fit within
any periodized lattice with N > 2L without wrapping the polymer around to the other
side.

For each fixed value of m,n ∈ P, the convolution over the periodized translational
lattice can be computed via lattice translational FFT in O(Nd log2N

d) operations where
|L/NL| = Nd. This means that the cost for computing over all values of m and n will be
|P|2 times this value, or O(|P|2 · Nd log2N

d). This means that it is asymptotically more
costly to perform one convolution by FFT than a single one-step convolution. However,
if the goal is to find only fLmax(g) without all of the intermediate functions fi for i =
1, ..., Lmax − 1, then the method is faster. The Fourier matrices f̂Lmax can be computed

by using the Fourier matrix f̂1. We can use the fact that f̂2 =
(
f̂1

)2
, f̂4 =

(
f̂2

)2
and so

forth. Hence we do not have to compute (Lmax − 1)-times matrix multiplications to have
f̂Lmax . Roughly (log2 Lmax)-times matrix multiplications will be enough. Consequently,
the computation of f̂Lmax requires O(|P|3Ld

max log2 L
d
max) = O(|P|3Nd log2N

d) operations,
because N is determined to be proportional to Lmax. Since |P| is independent of the
number of segments, the dominant complexity in overall computation is O(Nd log2N

d).

3. Numerical results

In this section we demonstrate our method by calculating the probability distribution
functions for non-reversal random walks of up to 400 segments on the square lattice and



A. Skliros, W. Park, G. S. Chirikjian / J. Alg. Stat., 1 (2010), 27-46 35

up to 20 segments on the cubic and diamond lattices.
First, we develop the array which defines the supports of the probability distribution

functions on the square, cubic and diamond lattices. Taking into account the final number
of segments that we want to reach (400, 20 and 20), we define arrays of dimensions
(801, 801, 4) for the square, (41, 41, 41, 24) for the cubic and (41, 41, 41, 12) for the diamond
lattice. The first two indices (for the square) and the first three (for the cubic and diamond)
denote the Cartesian coordinates on the lattice whereas the last array coordinate denotes
the index of the element of the point group describing discrete rotations. In order to avoid
aliasing, the arrays for the Cartesian coordinates must be at least (2N + 1, 2N + 1) for
the square lattice and (2N + 1, 2N + 1, 2N + 1) for the cubic and diamond lattices where
N is the number of segments.

We use the periodized lattice. This can be obtained using the mod2N+1 operation. For
example, in the square lattice, the coordinate of (−1, 0) for the periodized lattice would
be (mod(−1, 801), mod(0, 801)) = (800, 0). After we obtain the support arrays of the
functions in the periodized lattice, we compute the fast Fourier transform thereof using
the reducible representations we described above. The array for the Fourier transform
in the square lattice will be in dimensions of (401, 401, 4, 4), and in the cubic lattice will
be (41, 41, 41, 24, 24) and in the diamond lattice (41, 41, 41, 12, 12). One issue with the
Fourier transform is the Gibbs peaks that occur for large numbers of segments (greater
than 30). Classically these peaks occur when computing the Fourier transform of dis-
continuous functions. The probability distribution functions of random walks can exhibit
sharp changes in values from one point in the lattice motion group to another. We deal
with the problem by normalizing all the values by the biggest value. We round off all
the values less than 10−15 to zero. After finding the Fourier transform, f̂1, we compute
the Fourier transform for the longer segments. We compute f̂n(Πk) = (f̂1(Πk))

n for all
possible k, where n is the number of segments. Finally, inverse Fourier transform gives
fn(g).

3.1. Square lattice

In Figure 1, we present the distribution of the end point of 20-segment NRRW on the
square lattice. The probability density is depicted by the size and the darkness of the
circles. All the 320 possible end points are obtained and from there we can extract various
statistics including the probability distribution of the end-to-end distance. Although we
limited the number of segments as 20 in this example, we can increase this to a large value
as long as the computer memory allows. In the following test, we use the 400-segment
NRRWs.

Several important statistics, that are calculated in the literature [13, 14, 12, 23, 26, 33],
and give information about the shape (width, skewness) of the distribution functions for

R2, are ⟨R4⟩
⟨R2⟩2 ,

⟨R6⟩
⟨R2⟩3 and ⟨R8⟩

⟨R2⟩4 , where R is the end-to-end distance of the random walk. We

compute these quantities using the end points obtained by our method, and we compare
them with the results by the method described in [32]. When we compute the quantities,
the NRRWs with from 1 to 400 segments are considered. For convenience, we will refer
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Figure 1: Distribution of the end points of 20-segment NRRWs on the square lattice

to ⟨R4⟩
⟨R2⟩2 as RATIO4, ⟨R6⟩

⟨R2⟩3 as RATIO6 and ⟨R8⟩
⟨R2⟩4 as RATIO8. In Figures 2(a), 3(a), and

4(a), we respectively compare RATIO4, RATIO6 and RATIO8 obtained using our method
(crosses) and by the method described in [32] (a solid line). In addition, Figures 2(b), 3(b),
and 4(b) respectively show the difference at every number of segments. This difference
is defined as (b − a)/a, where a and b are the statistics (RATIO4, RATIO6 or RATIO8)
obtained by the Mattice method [32] and our method, respectively.
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Figure 2: RATIO4 = ⟨R4⟩/⟨R2⟩2 in the square lattice. (a) Comparison of the results obtained by Mattice
method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

Another statistical quantity of great importance is that of the ring closure. The ap-
proximate probability of the ring closure can be calculated analytically by the method
of Jacobson and Stockmayer [21]. The term “ring closure” simply means the probabil-
ity for a random walk to terminate in the origin. For the square lattice, in order for a
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Figure 3: RATIO6 = ⟨R6⟩/⟨R2⟩3 in the square lattice. (a) Comparison of the results obtained by Mattice
method (a solid line) and our method (crosses). (b) Difference between the two results in (a).
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Figure 4: RATIO8 = ⟨R8⟩/⟨R2⟩4 in the square lattice. (a) Comparison of the results obtained by Mattice
method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

walk to terminate in the origin, it has to have even number of segments and the num-
ber of segments has to be greater or equal than four. For the case of the square lattice,
which is a two-dimensional lattice, the Jacobson-Stockmayer result reduces to the formula
1
πn [21]. We count the number of walks that are obtained by our Fourier method and
terminate in the origin. Then we divide that number by the total number of random
walks to have the probability of the ring closure. This probability is compared with the
Jacobson-Stockmayer result, 1

πn .
Figure 5(a) shows the probabilities of ring closure on the square lattice. The two

results are obtained by the Jacobson-Stockmayer formula (a solid line) and our method
(crosses). Figure 5(b) shows the difference between the two results in Figure 5(a). The
difference is defined as (b−a)/a, where a and b are the probability of ring closure obtained
by the Jacobson-Stockmayer method [21] and our method, respectively. The Jacobson-
Stockmayer formula provides the probability of ring closure that is more accurate with
larger n. The fact that the difference in Figure 5(b) is getting closer to zero means that
the probability of ring closure obtained by our method is reliable.
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Figure 5: Probability of ring closure on the square lattice (a) Comparison of the results obtained by Jacobson-
Stockmayer method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

It is important to note that the main purpose of this comparison between the various
statistics is to verify that our method accurately generates the NRRWs. Using the NRRWs
obtained by our method, any kinds of statistics of the random walks can be computed,
while the methods such as the Mattice method and the Jacobson-Stockmayer method can
compute only the specific statistics.

3.2. Cubic lattice
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Figure 6: Distribution of the end points of 10-segment NRRWs on the cubic lattice

As in the square lattice, we can apply our method to the NRRWs on the cubic lattice.
Figure 6 shows the distribution of the end points of 10-segment NRRWs on the cubic
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Figure 7: RATIO4 = ⟨R4⟩/⟨R2⟩2 in the cubic lattice. (a) Comparison of the results obtained by Mattice method
(a solid line) and our method (crosses). (b) Difference between the two results in (a).
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Figure 8: RATIO6 = ⟨R6⟩/⟨R2⟩3 in the cubic lattice. (a) Comparison of the results obtained by Mattice method
(a solid line) and our method (crosses). (b) Difference between the two results in (a).

lattice. Figures 7(a), 8(a), and 9(a) show the statistics of the end-to-end distance obtained
using our method (crosses) and by the method described in [32] (a solid line) for up to
20 segments. In addition, Figures 7(b), 8(b), and 9(b) show the corresponding difference
at every number of segments. This difference is defined in the same way as in the square
lattice.

The probability of the ring closure that was calculated analytically by Jacobson and
Stockmayer [21] is ( 3

2πn)
3/2 for the cubic lattice. In order for a walk on the cubic lattice to

terminate in the origin, it has to have even number of segments and the number of segments
has to be greater than or equal to four. Figure 10(a) shows the probabilities of the ring
closure on the cubic lattice. The two results are obtained by the Jacobson-Stockmayer
method (a solid line) and our method (crosses). Figure 10(b) shows the difference between
the two results in Figure 10(a). We define this difference in the same way as in the square
lattice.
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Figure 9: RATIO8 = ⟨R8⟩/⟨R2⟩4 in the cubic lattice. (a) Comparison of the results obtained by Mattice method
(a solid line) and our method (crosses). (b) Difference between the two results in (a).
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Figure 10: Probability of ring closure on the cubic lattice (a) Comparison of the results obtained by Jacobson-
Stockmayer method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

3.3. Diamond lattice

As in the above two lattices, we can apply our method to the NRRWs on the diamond
lattice. One distinctive feature of the diamond lattice is that this lattice is 2-definable [35].
Therefore, we start with f̂2 as a smallest step and compute the NRRWs of the even number
of segments. Figure 11 shows the distribution of the end points of 10-segment NRRWs
on the diamond lattice. Figures 12(a), 13(a), and 14(a) show the statistics of the end-to-
end distance obtained using our method (crosses) and by the method described in [32] (a
solid line) for up to 20 segments. In addition, Figures 12(b), 13(b), and 14(b) show the
corresponding difference at every number of segments. This difference is defined in the
same way as in the above two lattices.

The probability of the ring closure calculated by Jacobson and Stockmayer [21] is
( 3
2πn)

3/2 for the diamond lattice. In order for a walk on the diamond lattice to terminate
in the origin, it has to have even number of segments and the number of segments has to
be greater than or equal to six. Figure 15(a) shows the probabilities of the ring closure on



A. Skliros, W. Park, G. S. Chirikjian / J. Alg. Stat., 1 (2010), 27-46 41

−20

−10

0

10

20

−20

−10

0

10

20

−20

−15

−10

−5

0

5

10

15

20

Figure 11: Distribution of the end points of 10-segment NRRWs on the diamond lattice
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Figure 12: RATIO4 = ⟨R4⟩/⟨R2⟩2 in the diamond lattice. (a) Comparison of the results obtained by Mattice
method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

the diamond lattice. The two results are obtained by the Jacobson-Stockmayer method
(a solid line) and our method (crosses). Figure 15(b) shows the difference between the
two results in Figure 15(a). We define this difference in the same way as in the above two
lattices.

4. Conclusions

Lattice random walks with no immediate reversals have applications in several various
fields such as polymer science, finance, crystallography, and robotics. In particular, we are
interested in studying properties of polymers that depend mainly on their conformations.
The statistics of these conformations are studied by simulating them as lattice random
walks. As the number of lattice segments increases, the number of all possible confor-
mations increases exponentially. In this paper we developed a method for calculating the
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Figure 13: RATIO6 = ⟨R6⟩/⟨R2⟩3 in the diamond lattice. (a) Comparison of the results obtained by Mattice
method (a solid line) and our method (crosses). (b) Difference between the two results in (a).
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Figure 14: RATIO8 = ⟨R8⟩/⟨R2⟩4 in the diamond lattice. (a) Comparison of the results obtained by Mattice
method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

distribution of the distal ends of the N -segment NRRWs in O(N2 log2N) computational
cost for the square lattice and O(N3 log2N) computational costs for the spatial lattices
(e.g., cubic and diamond). This is a significant improvement compared to the exponential
computational cost required by brute-force enumeration, or the random sampling that
is often used (e.g., Monte Carlo methods). Our method generated the distribution of
the distal end of long NRRWs using convolution of short NRRWs. This convolution was
implemented using the group Fourier transform for the lattice motion group.

In order to verify our method, we used our method to study statistical properties of
lattice random walks, and then compared them with the statistical quantities that other
existing methods computed. We considered the statistics of the end-to-end distance, which

are ⟨R4⟩
⟨R2⟩2 ,

⟨R6⟩
⟨R2⟩3 and ⟨R8⟩

⟨R2⟩4 , where R is the end-to-end distance of the random walks. First,

these quantities were computed using the position information of the distal end of the
random walks that are obtained using our method. Then the same statistical quantities
were computed using the Mattice method [32]. We also considered the probability of
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Figure 15: Probability of ring closure on the diamond lattice (a) Comparison of the results obtained by Jacobson-
Stockmayer method (a solid line) and our method (crosses). (b) Difference between the two results in (a).

the ring closure. This quantity was computed using two methods: Jacobson-Stockmayer
theory [21] and our method. All the comparison between the statistical quantities that
we considered here verified that our method generates the accurate distribution of the
conformations of the non-reversible random walks.
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Appendix: Reciprocal lattices for square, cubic and diamond lattices

A lattice is an infinite array of regularly spaced points in Rd. Given a linearly inde-
pendent set of not-necessarily-orthogonal basis vectors in Rd, i.e.,

{b1, ...,bd} with det[b1, ...,bd] ̸= 0,

a lattice is defined as

L =

{
d∑

i=1

mibi |mi ∈ Z

}
where Z denotes the integers. The vectors k, for the case of the multidimensional lattice
Discrete Fourier Transform are defined to be of the form

k =

d∑
j=1

kjb̂j (21)

where the set of vectors {b̂j} are defined by the conditions

bi · b̂j = 2πδij . (22)

Written for all i, j ∈ {1, ..., d} this becomes
bT
1

bT
2
...
bT
d

[b̂1, b̂2, ..., b̂d

]
= 2πI.

From this, it is clear that a set of vectors {b̂j} can always be found when a basis {bi} is
given, since [

b̂1, b̂2, ..., b̂d

]
= 2π [b1,b2, ...,bd]

−T

is well defined.
The set of vectors {b̂j} forms a basis for a new lattice, called the reciprocal lattice,

denoted as

L̂ =

{
d∑

i=1

mib̂i |mi ∈ Z

}
.

It is possible for a lattice to be self-reciprocal, i.e., L̂ = L, as in our cases of the unit
square, the cubic and the diamond lattices.


