
JOURNAL OF ALGEBRAIC STATISTICS
Vol. 1, No. 1, 2010, 6-12
ISSN 1309-3452 – www.jalgstat.com

Abstract Algebra in Statistics

Wen-Fong Ke1, Günter F. Pilz2,∗

1 Department of Mathematics, National Cheng Kung University, and National Center for
Theoretical Sciences (South), Tainan 701, Taiwan
2 Department of Algebra, Johannes Kepler Universität Linz, Altenberger Strasse 69, 4040
Linz, Austria

Abstract. In this note we show how some specific classes of algebraic structures (“planar near-
rings”) give rise to efficient Balanced Incomplete Block Designs, which in turn can excellently be
used in statistical experiments.
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1. The Algebraic-Combinatorial Settings

Definition 1. A finite set N of size v, together with a collection B of b subsets of size k
is called a Balanced Block Design if every element of N appears in a fixed number r of
subsets of B and every pair of different elements of N is contained in the same number of
λ subsets. We say that B is incomplete if it is not the set of all k-subsets of N , and, in
this case, (N,B) is then referred to as a BIB-Design.The elements of N are then called
points, the sets in B are called blocks. The quintuple (v, b, r, k, λ) are the parameter of the
design.

Given a BIB-Design (N,B), one can use it very well for statistical experiments. Sup-
pose one wants to test combinations out of v “ingredients” (usually called “treatments”)
for a final product. Then one can start with any combination and vary only one ingredient
at a time in a number of tests (“plots”). This is the traditional way, but it is a highly
inefficient one. It is much better and saves a lot of costs to change several or all ingredients
every time. It is a good ideas to do this in a “fair” manner: Each plot should get the
same number of ingredients, each ingredient should get the same “chance” in that it is
tested on the same number of plots, and each combination of different ingredients should
be tested in the same number of plots (to get information on positive or negative synergy
effects among the ingredients).

∗Corresponding author.

Email address: wfke@mail.ncku.edu.tw (W.-F. Ke), guenter.pilz@jku.at (G. F. Pilz)

http://www.jalgstat.com/ 6 c⃝ 2010 JAlgStat All rights reserved.



W.-F. Ke, G. F. Pilz / J. Alg. Stat., 1 (2010), 6-12 7

This can be achieved by choosing a (v, b, r, k, λ)-BIB Design; the ingredients are taken
as points, the blocks as plots, and the elements in a block are just the ingredients which are
applied in this plot. Then each of the b plots get precisely k ingredients, each ingredient
is tested r times, and each pair of different ingredients come together in precisely λ plots.
A concrete example follows below.

1. Tests of different ingredients to an optimal fertilizer on experimental agricultural
(not algebraic) fields which are the plots.

2. The ingredients might be additives to paints to increase their resistance to sunlight,
rain, etc. A plot is a test mixture for the paint.

3. For marketing purposes, one tests which combination of commercials work best to
get higher sales of an article. The commercials (TV spots, sales actions, . . . ) are
the ingredients in a particular test run (plot).

We want to show that one can easily get many (BIB-Designs) from a class of generalized
rings, so-called near-rings.

Definition 2. A set N , together with two operations + and ·, is a near-ring provided
that (N,+) is a group (not necessarily abelian), (N, ·) is a semigroup, and (n+ n′) · n′′ =
n · n′′ + n′ · n′′ holds for all n, n′, n′′ ∈ N .

Of course, every ring is a near-ring; hence near-rings are generalized rings. Two ring
axioms are missing: the commutativity of addition and (much more important) the other
distributive law.

The standard example of a near-ring can be obtained by taking a group (G,+), not
necessarily abelian; then GG = {f | f : G → G} is a near-ring with binary operations
+ and ◦ given by (f + g)(a) = f(a) + g(a) and (f ◦ g)(a) = f(g(a)) for all f, g ∈ GG

and a ∈ G. Furthermore, every near-ring can be embedded in some (GG,+, ◦) for some
suitably chosen group G.

We need, however, a specific type of near-rings motivated by geometry.

Definition 3. A near-ring N is called a planar near-ring if (1) there are at least two
elements a, b ∈ N such that x · a ̸= 0, y · b ̸= 0, and z · a ̸= z · b for some x, y, z ∈ N , and
(2) all equations

x · a = x · b+ c, (a, b, c ∈ N, z · a ̸= z · b for some z ∈ N),

have exactly one solution x ∈ N .

This conditions of the planar near-rings mean that (1) there are at least two distinct
non-zero “slopes”, and (2) two “non-parallel” lines (described by some equations y =
x · a+ c1 and y = x · b+ c2) have exactly one point of intersection.

There are various methods to construct planar near-rings (see [4] and [8]). Most of
them use fixed-point free automorphism groups. Here we just present the easiest way
which suits our need.
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Definition 4 (Construction method for finite planar near-rings). Take a finite field F =
GF(q), where q is a power of some prime p, and choose a generator g for its cyclic
multiplicative group. Choose a proper factor t of q − 1. Define a new multiplication ∗t
in F as gm ∗t gn := gm+n−nt, where m,n ∈ {1, 2, . . . , q − 1}, and nt ∈ {0, 1, . . . , t − 1}
denotes the remainder of n on division by t; also set 0 ∗t gm = gm ∗t 0 = 0 · 0 = 0. Then
(F,+, ∗t) is a planar near-ring.

Example 1. We give a (very small) example. Choose F = GF(7) with g = 3 a generator,
and t = 2 as a divisor of 6 = 7− 1. From this, we get the multiplication table

∗2 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 1 4 4 2
2 0 2 4 2 1 1 4
3 0 3 6 3 5 5 6
4 0 4 1 4 2 2 1
5 0 5 3 5 6 6 3
6 0 6 5 6 3 3 5

For example, in F we have 4 = 34 (namely, 4 ≡ 34 (mod 7)) and 3 = 31, and the above
table says that 4 ∗2 3 = 34 ∗2 31 = 34+1−1 = 34 = 4 in F .

2. The Experimental Settings

The last example can be readily used to design statistical experiments. Again, we show
this via an example.

Example 2. We want to test the combinations out of 7 ingredients for fertilizers. Testing
all 27 = 128 possible combinations of ingredients requires a huge amount of space and
money. So we conduct an incomplete test. But this one should be fair to the ingredients
(each ingredient should be applied the same number of times) and fair to the experimental
fields (each test-field should get the same number of ingredients).

We take the above near-ring of order 7 and form the sets Bi = a ∗2 N∗ + b, a, b ∈ N
with a ̸= 0. Here N∗ denotes the non-zero elements of N , and a ∗2 N∗ = {a ∗2 x | x ∈ N ,
x ̸= 0} is abbreviated as aN∗:

1N∗ + 0 = {1, 2, 4} =: B1, 3N∗ + 0 = {3, 5, 6} =: B8,
1N∗ + 1 = {2, 3, 5} =: B2, 3N∗ + 1 = {4, 6, 0} =: B9,

...
...

1N∗ + 6 = {0, 1, 3} =: B7, 3N∗ + 6 = {2, 4, 5} =: B14.

(Notice that 1N∗ = 2N∗ = 4N∗ and 3N∗ = 5N∗ = 6N∗.) We see that these blocks form a
BIB-design with v = 7 points (namely 0, 1, 2, 3, 4, 5, 6) and b = 14 blocks B1, . . . , B14 with
each block contains precisely k = 3 elements; each point lies in exactly r = 6 blocks, and
every pair of distinct points appears in λ = 2 blocks.
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In order to solve our fertilizer problem, we divide the whole experimental area into 14
experimental fields, which we number by 1, 2, . . . , 14. We then apply precisely the fertilizer
Fi to a block j if i ∈ Bj, i = 0, 1, . . . 6. Then we have to wait for the harvest time and we
can measure the yields in the 14 blocks.

Field 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fertilizer

F0 x x x x x x

F1 x x x x x x

F2 x x x x x x

F3 x x x x x x

F4 x x x x x x

F5 x x x x x x

F6 x x x x x x

Yields yi 12.3 14.1 12.1 14.9 11.1 13.6 12.5 11.2 13.9 13.5 11.3 13.9 12.2 14.9

The last row indicates the yields on the experimental fields after performing the experiment.
We also include a 0th field on which we put nothing (“reference field”), because something
will grow even if no fertilizer is put to the ground; on this field, we got a yield of 10.5.

Then we get that every field contains exactly 3 fertilizers and every fertilizer is applied
to 6 fields. Moreover, every pair of different fertilizers is applied precisely twice in direct
competition. That is, we have used a BIB-design with parameters (7, 14, 13, 3, 2).

The statistical analysis tries to give a “formula” for the yield y as y = c+β0x0+β1x1+
· · · + βv−1xv−1. We want to find best estimates for c and the βi and use the incidence
matrix A of the design, which is a (v + 1) × b matrix with 1 at the (i, j) position if the
ith element is in the jth block, otherwise, 0 at that position. Take y = (y1, y2, . . . , yb),
compute (AAt)−1Ayt =: (c, β0, . . . , βv−1)

t, and then Linear Algebra and/or Statistics tells
us that β0, . . . , βv−1 are the best estimates for the effects of the ingredients F0, . . . , Fv−1.

In our case, we get the best estimates for the effects of c and Fi = βi, i = 0, . . . , 6, as

(c, β0, β1, β2, β3, β4, β5, β6) = (10.5, 1.95,−0.4, 1.4, 0.4, 1.45, 1.3,−0.3).

Also, by the usual statistical analysis, we get confidence intervals for c and the effects
of Fi. We see that β1, β3, and β6 are not significant and thus leave off ingredients number
1, 3, and 6 and do the regression again. So we only apply F0, F2, F4, F5 to expect a yield
of 10.3 + 2.0 + 1.5 + 1.5 + 1.4 = 16.7, which is considerably better than the best yield of
14.9 which we got in the experiments. Other consideration may further improve the result
(see Section 4 for more details).

3. A variety of designs from Planar Near-Rings

Given a finite planar near-ringN = (GF(q),+, ∗t) from the construction in Definition 4,
we can obtain several BIB-designs by choosing appropriately a collection of subsets of N
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(called blocks). Recall that a ∗t N∗ and a ∗t N are respectively abbreviated as aN∗ and
aN .

1. Take blocks the collection B∗ of all aN∗ + b with a, b ∈ N and a ̸= 0. See [4, (5.5)].

2. Take blocks the collection B of all subsets of the form aN + b with a, b ∈ N and
a ̸= 0, provided that either all or none of the aN are additive subgroups (cases 1 or
2, respectively). See [4, (7.10) and (7.11)].

3. Take blocks the collection B− of all (aN ∪ (−a)N) + b with a, b ∈ N and a ̸= 0,
provided that for all nonzero a, aN ∩ (−a)N = {0}, aN ∪ (−a)N is not an additive
subgroup of N , and the map ta : N → N ; ta(x) = x+ ax is bijective. See [4, (7.99)].

4. Take blocks the collection S consisting of the intersection of (b − a)N + a and
(a− b)N + b with a ̸= b. See [9].

In general, similar results can be established for any finite planar near-rings not con-
structed from the method of Definition 4. For more details see [4] and [9].

4. Statistical Considerations

In the cases mentioned above, we get the following parameters for the corresponding
experimental designs (recall that we use q for the cardinality of the near-ring N with
underlying set GF(q), and we have q − 1 = st with s > 1 and t > 1):

Theorem 1. 1. For (N,B∗), we can test q “ingredients”; for that, we need b = qs tests
with k = t ingredients in each test. Every ingredient is tested r = q − 1 times, and
each pair of different ingredients is tested λ = t− 1 times.

2. In (N,B), we need s2 tests in case 1, in which we apply k = t + 1 ingredients in
each test. Each ingredient is tested in exactly r = s times, and each pair of different
ingredients is tested λ = 1 time. For case 2, we need qs tests with again t + 1
ingredients in each test, but now r = q + s and λ = t+ 1.

3. In (N,B−), we again get b = qs/2 tests with k = 2t + 1 ingredients in each test,
r = q + s/2, and λ = 2t+ 1. (Note that in this case, s is even.)

4. Finally, for (N,S), b = q(q− 1)/2, some k and r (which can be determined by some
equations), and λ = k(k − 1)/2.

We would like to remark that BIB-designs may have other properties besides the
fairness in getting equal number of tests on any combination of different ingredients. There
are BIB-designs having the same appearance but behaving differently from the structural
point of view. That is, there are (in algebra sense) non-isomorphic BIB-designs having
the same parameters. (See [6].) Also, there are BIB-designs such that any three distinct
elements are contained in at most one block (cf. [3]), which may have some advantage
over others that miss such characteristic. One may also want to take such structural
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considerations into account when choosing a BIB-design for experiments. The construction
methods of Section 3 do produce such BIB-designs.

It is a good idea to care about possible (positive or negative) synergy effects. This is
equivalent to asking if the linear model used here is really appropriate. The best way is to
include, e.g., products of variables xixj into the linear model y = c+β0x0+ · · ·+βv−1xv−1

and to test if these products xixj appear with significant coefficients in the regression
result. The same might be done with terms like x2i , and so on.

Some practical advises on the analysis of experiments conducted on such BIB-designs
might be useful:

1. One should try to plot all pairs (xi,j , yj) for each experiment Ej (1 ≤ j ≤ m):

(x1,j , . . . , xi,j . . . xn,j ; yj)

in order to see if a dependence between xi and y is likely, and, if so, whether this
relation seems to be linear or not.

2. Whether the BIB-Design model only allows to use an ingredient or not? If one wants
to test an ingredient in, say, 3 levels (like using one, two, or three liters of it), one
can use these levels as independent ingredients. So using 3 levels, one gets 2 more
variables.

3. As a rule of thumb, the number b of experiments should at least be of the order of
magnitude of the square of the number of variables (including the combinations like
xixj).

4. So one should avoid an “over-fitting” (too many variables). A good way to check how
good a model might be is to look at the “P-value”. This value should be very close
to 0; something like 10−5 is usually not bad. The P-value decreases with the number
of variables, so even better is, in most cases, that the R2

adj-value which should be
close to 1, because this value also takes into account how many variables were used.
Wikipedia [10] gives a good account on this, for example.

In our example above, we might test the Fi for synergies. We find by inspection
of the regression results that F2 ∗ F5 has a positive synergy effect. We get estimates
(c, β0, β2, β4, β5, β2 ∗ β5) = (10.6, 2.2, 0.8, 1.3, 0.7, 1.9) and so a total yield of 17.5, which is
again much better. Also, the P- and the R2

adj-values have developed nicely:

1. All variables: P = 8× 10−4, R2
adj = 0.885.

2. Variables x0, x2, x4, x5: P = 1× 10−4, R2
adj = 0.843.

3. Variables x0, x2, x4, x5, x2 × x5: P = 5× 10−7, R2
adj = 0.962.

Even after all is said and done, one can not be sure that the model used was really
accurate. But this is statistics, and one only can claim that the model was good with a
certain probability. Observe that there does not exist a “best” model; this concept is not
even well-defined. More on the analysis of experiments can, e.g., be found in [1], [2], [5]
or [7].
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